SplitJoin: A Scalable, Low-latency Stream Join Architecture with Adjustable Ordering Precision

نویسندگان

  • Mohammadreza Najafi
  • Mohammad Sadoghi
  • Hans-Arno Jacobsen
چکیده

There is a rising interest in accelerating stream processing through modern parallel hardware, yet it remains a challenge as how to exploit the available resources to achieve higher throughput without sacrificing latency due to the increased length of processing pipeline and communication path and the need for central coordination. To achieve these objectives, we introduce a novel top-down data flow model for stream join processing (arguably, one of the most resource-intensive operators in stream processing), called SplitJoin, that operates by splitting the join operation into independent storing and processing steps that gracefully scale with respect to the number of cores. Furthermore, SplitJoin eliminates the need for global coordination while preserving the order of input streams by re-thinking how streams are channeled into distributed join computation cores and maintaining the order of output streams by proposing a novel distributed punctuation technique. Throughout our experimental analysis, SplitJoin offered up to 60% improvement in throughput while reducing latency by up to 3.3X compared to state-of-the-art solutions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Low-Latency Handshake Join

This work revisits the processing of stream joins on modern hardware architectures. Our work is based on the recently proposed handshake join algorithm, which is a mechanism to parallelize the processing of stream joins in a NUMA-aware and hardware-friendly manner. Handshake join achieves high throughput and scalability, but it suffers from a high latency penalty and a non-deterministic orderin...

متن کامل

Extending the Scalability of Single Chip Stream Processors with On-chip Caches

As semiconductor scaling continues, more transistors can be put onto the same chip despite growing challenges in clock frequency scaling. Stream processor architectures can make effective use of these additional resources for appropriate applications. However, it is important that programmer effort be amortized across future generations of stream processor architectures. Current industry projec...

متن کامل

High-Radix Design of a Scalable Modular Multiplier

This paper describes an algorithm and architecture based on an extension of a scalable radix-2 architecture proposed in a previous work. The algorithm is proven to be correct and the hardware design is discussed in detail. Experimental results are shown to compare a radix-8 implementation with a radix-2 design. The scalable Montgomery multiplier is adjustable to constrained areas yet being able...

متن کامل

Design of a novel congestion-aware communication mechanism for wireless NoC architecture in multicore systems

Hybrid Wireless Network-on-Chip (WNoC) architecture is emerged as a scalable communication structure to mitigate the deficits of traditional NOC architecture for the future Multi-core systems. The hybrid WNoC architecture provides energy efficient, high data rate and flexible communications for NoC architectures. In these architectures, each wireless router is shared by a set of processing core...

متن کامل

Assessing the efficiency of stream reuse techniques in P2P video-on-demand systems

Many works have reported simulated performance benefits of stream reuse techniques such as batching, chaining, and patching to the scalability of VoD systems. However, the relative contribution of such techniques has been rarely evaluated in practical implementations of scalable VoD servers. In this work, we investigated the efficiency of representative stream reuse techniques on the GloVE syst...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016